Recently, fine-tuning pre-trained code models such as CodeBERT on downstream tasks has achieved great success in many software testing and analysis tasks. While effective and prevalent, fine-tuning the pre-trained parameters incurs a large computational cost. In this paper, we conduct an extensive experimental study to explore what happens to layer-wise pre-trained representations and their encoded code knowledge during fine-tuning. We then propose efficient alternatives to fine-tune the large pre-trained code model based on the above findings. Our experimental study shows that (1) lexical, syntactic and structural properties of source code are encoded in the lower, intermediate, and higher layers, respectively, while the semantic property spans across the entire model. (2) The process of fine-tuning preserves most of the code properties. Specifically, the basic code properties captured by lower and intermediate layers are still preserved during fine-tuning. Furthermore, we find that only the representations of the top two layers change most during fine-tuning for various downstream tasks. (3) Based on the above findings, we propose \textbf{Telly} to efficiently fine-tune pre-trained code models via layer freezing. The extensive experimental results on five various downstream tasks demonstrate that training parameters and the corresponding time cost are greatly reduced, while performances are similar or better.

Tue 18 Jul

Displayed time zone: Pacific Time (US & Canada) change

15:30 - 17:00
ISSTA Online 1: SE and Deep LearningTechnical Papers at Smith Classroom (Gates G10)
Chair(s): Myra Cohen Iowa State University
15:30
10m
Talk
COME: Commit Message Generation with Modification Embedding
Technical Papers
Yichen He Beihang University, Liran Wang Beihang University, Kaiyi Wang Beihang University, Yupeng Zhang Beihang University, Hang Zhang Beihang University, Zhoujun Li Beihang University
DOI
15:40
10m
Talk
CODEP: Grammatical Seq2Seq Model for General-Purpose Code Generation
Technical Papers
Yihong Dong Peking University, Ge Li Peking University, Zhi Jin Peking University
DOI Pre-print
15:50
10m
Talk
Towards More Realistic Evaluation for Neural Test Oracle Generation
Technical Papers
Zhongxin Liu Zhejiang University, Kui Liu Huawei, Xin Xia Huawei, Xiaohu Yang Zhejiang University
DOI Pre-print
16:00
10m
Talk
Detecting Condition-Related Bugs with Control Flow Graph Neural Network
Technical Papers
Jian Zhang Beihang University, Xu Wang Beihang University, Hongyu Zhang Chongqing University, Hailong Sun Beihang University, Xudong Liu Beihang University, Chunming Hu Beihang University, Yang Liu Nanyang Technological University
DOI
16:10
10m
Talk
RefBERT: A Two-Stage Pre-trained Framework for Automatic Rename Refactoring
Technical Papers
Hao Liu Xiamen University, Yanlin Wang Sun Yat-sen University, Zhao Wei Tencent, Yong Xu Tencent, Juhong Wang Tencent, Hui Li Xiamen University, Rongrong Ji Xiamen University
DOI Pre-print
16:20
10m
Talk
Interpreters for GNN-Based Vulnerability Detection: Are We There Yet?
Technical Papers
Yutao Hu Huazhong University of Science and Technology, Suyuan Wang Huazhong University of Science and Technology, Wenke Li Huazhong University of Science and Technology, Junru Peng Wuhan University, Yueming Wu Nanyang Technological University, Deqing Zou Huazhong University of Science and Technology, Hai Jin Huazhong University of Science and Technology
DOI
16:30
10m
Talk
Towards Efficient Fine-Tuning of Pre-trained Code Models: An Experimental Study and Beyond
Technical Papers
Ensheng Shi Xi’an Jiaotong University, Yanlin Wang Sun Yat-sen University, Hongyu Zhang Chongqing University, Lun Du Microsoft Research, Shi Han Microsoft Research, Dongmei Zhang Microsoft Research, Hongbin Sun Xi’an Jiaotong University
DOI